Plastic Strain Ratio (r-value) According ISO 10113, ASTM E517, and JIS Z 2254

ISO 10113, ASTM E517, and JIS Z 2254 specify methods for determining the plastic strain ratio (commonly called the r-value) of flat metallic materials, typically sheet and strip metals. The r-value is defined as the metal's ability to resist thinning or thickening when subjected to a tensile or compressive force.

r-value testing

To calculate the r-value, a test is performed to ISO 6892 and requires the use of axial and transverse extensometers. Where the behavior of true plastic width strain versus true plastic length strain is homogeneous, a single point calculation can be used. For material that exhibits inhomogeneous deformation, a regression method is recommended, and ISO 10113:2020 strongly recommends measuring transverse strain at multiple locations evenly distributed along the axial gauge length, to be averaged into one value. The AverEdge32™ feature of Instron's AVE2 non-contacting video extensometer can provide this capability, and these calculations can be done automatically in real time using the Bluehill® Universal materials testing software.

An ISO 10113, ASTM E517, or JIS Z 2254 test is typically performed at the same time as ISO 10275, ASTM E646, or JIS Z 2253, the tensile strain hardening exponent (n-value). Sheet metal testing applications require calculations such as yield strength, yield point elongation, ultimate tensile strength, r-value and n-value. These calculations place a high physical demand on traditional contacting extensometers for measuring axial and transverse strain. They need to allow for enough travel to test the specimens through break, but small gauge lengths make it more challenging to ensure high accuracy of the measurements. Additionally, relevant ASTM and ISO testing standards have accuracy requirements that must be achieved.

Historically, video extensometry is not frequently used in these applications, as most customers in the metals industry prefer traditional contacting extensometers and trust the reliability of the results. Significant advances in the technology of video extensometry offer metals testing customers other options. Not only do video extensometers like the AVE2 allow for simultaneous collection of axial and transverse strain data and reduce the maintenance required for wear and tear on knife-edges, they have also been shown to increase productivity and simplify testing. In addition, the AverEdge32™ feature has shown substantial improvement in reducing transverse strain measurement variability.

Instron's AutoX Biaxial automatic contacting extensometer is another excellent solution for biaxial strain measurement, as it provides repeatable r-value results that are not influenced by operator input as traditional extensometers are.

Related Content

Instron AverEdge 32

신뢰할 수 있는 AVE 2 고급 비디오 연신계를 기반으로 하는 AverEdge32는 모든 판금 소재에 대해 동급 최고의 횡방향 변형 정확도를 제공하는 Instron의 최신 혁신 제품입니다.

AVE 2 비접촉형 비디오 연신계

2세대 고급 비디오 연신계(AVE 2)는 특허 받은 측정 기술을 이용하여 가장 빠르고 가장 정확하며 상업적으로 이용 가능한 비접촉 스트레인 측정 장치입니다.

자동 접촉 연신계 - 모델 AutoX 750

AutoX 750은 고해상도, 장거리 자동 접촉 연신계입니다. 모든 전자기계식 3300, 3400, 5500, 5900 또는 6800 시리즈 탁상용 모델 및 플로어 모델 시스템과 LX, DX, HDX 및 KPX 정적 유압 시험기에 장착할 수 있습니다. 플라스틱, 금속, 생물의학, 복합소재, 탄성복합제 등과 관련된 응용 분야에 매우 적합합니다. AutoX는 최대 이동 거리가 750mm이고 정확도는 ±1µm입니다.